Background

In the ongoing digitalization in forest management, the trend has for many years been to increase the use of data for individual trees to optimize the use of the biomass. This was first manifested in forest machines that automatically optimize the cutting of trees instead of relying on the operator’s judgement in order to reduce the waste material. Also, publicly available data sets are used to a greater extent with an increased resolution and precision, e.g. laser scans by Lantmäteriet1, which now has a resolution of up to 1 m, and meteorological and hydrological data from SMHI2. In the Nordic countries, there are a number of initiatives in the field, where two of the larger ones are worth mentioning in this context:

  • Mistra digital forest3 – The program is led by Skogsindustrierna and aims to increase digitalization in the whole value chain from the standing trees to the factory. The program shares some aspects with the Smart Twin project, but since they have a much wider scope, they do not go into the same detail in their work similar to the digital models in this project.

They use fewer sensor types and do not work with a unified and layered model and have no particular focus on visualization techniques.

  • Metsä Group in Finland is developing a digital forest in collaboration with Tieto4. They are using state-of-the-art sensors, but not some of the novel sensors used in the Smart Twin project. As in the Mistra digital forest, there is no particular focus on novel visualization techniques.

Digital forest models are needed for forest management, guidance, planning and protection, where people can join to handle cases that need additional clarification or insight. This brings the need to combine short- and long-term economic efficiency with sustainability to view the current state of the art of the forest. A further development to improve resolution and user interaction is hence requested by the forest industry, and the Smart Twin project will provide important advances in terms of exploring the use of novel sensors and novel visualization/user interaction methods for a number of use cases relevant for the end-users in the project.

The end-users in this project are already involved in similar initiatives in the area. In these initiatives, they have identified some problems:

  • Data for different uses are available in different apps, a unified model is missing
  • Data is not available in high enough resolution
  • Some important factors cannot be retrieved from the sensor data
  • They lack in knowledge of what technology can provide for them.

In this project, we aim at resolving these issues by including many sensor types, by using advanced visualization techniques, and by demonstrating new possibilities with the available technologies. Likewise, the project shall provide a platform for new knowledge and insights.

The previous project, Visual Sweden platform project Intelligent n-dimensional modeling by multidimensional sensor informatics for computer vision and visualization (n-D project) was completed by sixteen partner organizations, expanding 3D models of urban and rural areas into digital twins by using a variety of sensors providing different layers of information. n-D modeling is a data collection and aggregation platform, which provides a rich framework for advanced digitalization including a range of sensor and data fusion solutions that can be customized to attend user’s needs.

Project Goals

The goal of the project is to demonstrate two use cases; Smart Forest Twin and a Smart Wildfire Twin, based on user needs, and utilizing the best of sensor technology, visualization, and user knowledge. This will be demonstrated by a process chain that;

  • starts from the needs of the end users to create a smart twin of the forest to demonstrate the added value,
  • creates a platform that can increase the ability to show the added value of the products and services of the participating partners for a specific part of the market, and
  • shows how information can support forestry.

Another goal is to

  • build an open atmosphere of sharing knowledge among the partners in order to promote new partner collaborations, both for research and for new commercial ideas.

There are several possibilities to exploit the project results. Here we’ll address other application areas, company growth and academy.

Smart Twin can be used for similar application areas;

  • City parks and expansion, to plan and analyze the impact of growing cities
  • Property valuation, to analyze and report damages to forest from wildfires, storms etc.
  • Documenting and monitoring cultural or historical interests
  • Autonomous power line inspection for maintenance and repair
  • Command and Control by visualizing new and time critical information in rescue operations

Partners

The end-user partners are;

  • Vattenfall
  • Mellanskog
  • Boxholms Skogar
  • Skogstekniska klustret
  • Räddningstjänsten Östra Götaland
  • Swedish Police Authority

Academic partners are;

  • RISE Research Institutes of Sweden
  • Linköping university, CVL
  • KTH Media Lab

Participating tech-companies are;

  • Glana
  • Deep Forestry
  • MainBase
  • Precendia (spin-off from SmartAgritech)
  • Spotscale
  • Termisk systemteknik
  • Vricon

 

Projektet drivs av

RISE Research Institutes of Sweden

Projekttid

feb 2021 - dec 2022

Publikationer

Anton Hjert,
”Machine Learning for LiDAR-SLAM: In Forest Terrains”,
Linköpings universitet, Institutionen för systemteknik, Datorseende, November 2021,
LiTH-ISY-EX–21/5442–SE

Mikael Persson, Gustav Häger, Hannes Ovrén, Per-Erik Forssén,
”Practical Pose Trajectory Splines With Explicit Regularization”, International Virtual Conference on 3D Vision (3DV 2021) December 2021

Felix Järemo Lawin,
”Learning Representations for Segmentation and Registration”,
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten, (Computer Vision Laboratory) No. 2151, Augusti 2021

BSc projektpresentation ”Machine Learning for analysis of hyperspectral images” Linköping University i samarbete med Glana Sensors, 2022.

FOIS exjobb – Per-Erik handledare, Classification of Terrain Roughness from Nationwide Data Sources Using Deep Learning, Fredriksson, Emily

Listan är ofullständig och fylls på efter hand. En slutrapport om hela projektet kommer att publiceras i juni 2023.

Fler projekt

3D-modeller av brottsplatser ska bli mer användarvänliga

Om projektet

3D-visualisering effektiviserar undersökningar av mark

Om projektet

AI-driven skogsanalys för hyggesfri avverkning

Om projektet

Ansiktsigenkänning ett stöd för polisen

Om projektet

AR ökar medborgardialogen i Ebbepark

Om projektet

AR tar dig till nödutgången när olyckan är framme

Om projektet

ASSIST

Om projektet

Augmented Operator

Om projektet

Augmented Reality i urbana miljöer

Om projektet

Baltic Virtual

Om projektet

Cover Up – temperaturmätning av personer med ansiktsmask

Om projektet

Digitala tvillingar för trygghetsskapande teknologier

Om projektet

EcoWeb i jordbrukslandskapet

Om projektet

Exploiting Gaming Tech for Visualisation

Om projektet

Fotorealistisk visualisering av kundanpassade produkter

Om projektet

Galileo Masters

Om projektet

Geoviz

Om projektet

Geoviz 2

Om projektet

Grön flygplats – utbildning i VR

Om projektet

Intelligent n-dimensional modeling by multidimensional sensor informatics for computer vision and visualization

Om projektet

Korrekta bilder av kvinnans kön förbättrar vården

Om projektet

LED-stage revolutionerar filmindustrin

Om projektet

Liopep minskar stillasittande på arbetsplatsen med hjälp av AI

Om projektet

Maskininlärning för interaktiv åldersklassificering av filmer, del 2

Om projektet

MATCH

Om projektet

Mathetopia – ett spelbaserat läromedel som visualiserar matematikens roll i verkligheten

Om projektet

Medical Digital Twin 4 (MeDigiT4)

Om projektet

Molnbaserad arkitektur för heterogena data

Om projektet

Navigering för synnedsatta

Om projektet

Nya visualiseringsverktyg för industriell 3D-röntgen

Om projektet

Öppen bilddatabas med detaljerade annoteringar för AI-träning

Om projektet

Platform för Augmented Intelligence

Om projektet

PlayIT – en interaktiv lekpark som främjar lärande av programmering, hållbarhet och fysiskt välmående.

Om projektet

Rör dig i och visa kommande byggen med 3D-modell i VR

Om projektet

Sjukhusclowner flyttar in i din digitala enhet

Om projektet

Skanning av sprängning

Om projektet

Språkoberoende och visuell utbildning inom städbranschen ska ge fler jobb och öka integrationen

Om projektet

Städinsatsen i Norrköping visualiserades Live med hjälp av appen LitterQuitter

Om projektet

Traces – Digital 3D-modell av Industrilandskapet

Om projektet

Trash – spelet som visualiserar världens sopor i realtid

Om projektet

TWIN Generator

Om projektet

Utbilda unga i datajournalistik

Om projektet

Utställning i Visualiseringscenter C lär barn om visualisering

Om projektet

Venture Creation – nyföretagarmodell inom visualisering

Om projektet

Virtuell vittnesvallning

Om projektet

Visual Crime Scene

Om projektet

Visual LIFT

Om projektet

Visual Sweden City Platform

Om projektet

Visualisering av journaldata förenklar vården

Om projektet

XR Sweden

Om projektet